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The origins of cortical interneurons in rodents have been

localized to the embryonic subcortical telencephalon where

distinct neuroepithelial precursors generate defined

interneuron subsets. A swathe of research activity aimed at

identifying molecular determinants of subtype identity has

uncovered a number of transcription factors that function at

different stages of interneuron development. Pathways that

lead to the acquisition of mature interneuron traits are therefore

beginning to emerge. As genetic programs are influenced by

external factors the search continues not only into genetic

determinants but also extrinsic influences and the interplay

between the two in cell fate specification.
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Introduction
GABAergic interneurons constitute 20–30% of all

neurons in the cortex and are essential for cortical circuit

function. Through their inhibitory actions cortical inter-

neurons have multiple functions including maintenance

of network balance and shaping of synchronized activity

[1]. This functional diversity of interneurons in the cortex

is enabled through a remarkable heterogeneity. The

exact number of different subtypes that exist in the adult

cortex is unclear partly because of ambiguity in their

classification. However, recent concerted efforts to pull

together different criteria provide great promise for a

unifying classification scheme [2,3��].

Tremendous efforts have been made in the last 15 years

to determine how interneuron heterogeneity becomes

established (recently reviewed in [4,5��,6,7��,8]). It is

now widely accepted that genetic pathways hold the

key to cell fate determination. Insight into the genetics

that drive cell diversity is emerging fast and has already

had far reaching benefits beyond basic science into neu-

rodevelopmental disease research and stem cell therapies
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[9,10��,11]. In this review we describe the known

genetic regulatory pathways that promote cortical inter-

neuron cell fate specification focusing mainly on the

most recent advances in the field. As intrinsic genetic

programs of cell identity do not act in isolation, we

discuss how extrinsic cues influence the development

of cortical interneurons.

Generating interneuron diversity
The generation of interneuron diversity begins during

embryogenesis when cortical and hippocampal inter-

neurons are born in subcortical regions and migrate away

to reach their final positions. Three sources of cortical

interneurons have been identified in the telencephalon:

the medial ganglionic eminence (MGE), the caudal

ganglionic eminence (CGE) and the preoptic area

(POA) (Figure 1). Each of these regions generates distinct

cohorts of interneurons for the cortex indicating that

restriction of neurogenic potential in the subpallium

generates diversity (Figure 1).

The three sources of interneurons identified to date are

clearly not enough to explain the >20 subtypes of mature

interneurons found in the adult cortex and hippocampus

[1,12]. Original suggestions that the septum — the fourth

major germinal zone of the ventral telencephalon — may

generate interneurons for the cortex have been disproved

[13]. However, smaller subdivisions of the neuroepithe-

lium lining the ganglionic eminences have been ident-

ified based on transcription factor expression, raising the

possibility that finer restriction of neurogenic fate from

the three major sources may contribute to diversity [14].

In agreement with this, biases in interneuron subtype

generation have been described within the ganglionic

eminences and the POA along the dorso-ventral and

anterior–posterior axes (see dMGE and POA sections

below) [4,5��,6,7��,8].

Superimposed on the spatial control of interneuron fate is

temporal regulation, with distinct interneurons being

generated at different stages during development

[15,16,17��]. The temporal regulation of cell identity

within the MGE has recently been attributed partly to

the presence of distinct precursors for upper and lower

layer MGE-derived interneurons [18��]. One question

that ensues is whether committed precursors of early-

born and late-born interneurons in the ganglionic emi-

nences are intermingled but molecularly distinct from

each other, as recently shown for pyramidal neuron pre-

cursors [19].
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80 Synapses, neurons and circuits
Spatial genetic patterning of the
neuroepithelium and initiation of the cortical
interneuron development pathway
Much like the spinal cord where morphogen-regulated

transcription factors establish distinct progenitor domains

[20], the telencephalic subdivisions arise through the

activation of transcription factors that provide the neu-

roepithelial cells with their identity (Figures 1 and 2).

Morphogens that pattern the telencephalon include SHH

and FGF and early-acting transcription factors include

GLI1/2/3, PAX6, SIX3, FOXG1, NKX2-1, GSX2, ASCL1

and NEUROG2 [21–24]. These transcription factors

function well before the appearance of any cortical
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interneurons and yet have profound effects on cortical

interneuron development through restriction of progeni-

tor differentiation potential.

At the top of the genetic cascade of cortical interneuron

development are the transcription factors DLX1 and

DLX2 which are activated in all interneurons down-

stream of early patterning genes (Table 1 and

Figure 2). DLX1/2 have multiple roles at the initial stages

of cortical interneuron development including inhibition

of glial fate, promotion of GABAergic differentiation and

cell migration [4,5��,6,7��,8]. ARX and DLX5/6 are two

direct targets of DLX1/2. They are transcription factors
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(a)

(b)

VZ SVZ / mantle cortical plate adult cortex

dCGE

MGE

dMGE

POA

Dlx1/2
Ascl1
Gsx1/2 (high)
Pax6(low)
Nr2f1*
Nr2f2

Dlx1/2/5/6, 

Prox1, Sp8 
Arx, Zeb2?,
Nr2f1*,  Nr2f2,

Ascl1
Gsx2

Nkx6-2

Dlx1/2
Ascl1

Dlx1/2

Nkx2-1

Gli1

Nr2f2

(low)

Nkx2-1
Gli1
Dbx1*
Nkx6-2*

Nr2f1

Nr2f1*

Dlx1/2/5/6, 

Arx, Zeb2, 
Nr2f1*,

Nr2f1*
Dlx1/2/5/6, 

Lhx6*, Prox1, 

Dlx1/2/5/6, 

Arx, Zeb2,
Nr2f1*,  Nr2f2,

Nr2f2

Lhx6, Sox6

Lhx6, Sox6

Nr2f1*,  Arx, 

Hmx3*

Dlx1/2/5/6, 

Prox1, Sp8 
Arx, Zeb2?,
Nr2f1*,  Nr2f2,

Dlx1/2/5/6, 

Nr2f1*, Arx, Zeb2?

Lhx6, Sox6, Satb1

Dlx1/2/5/6, 

Arx, Zeb2?, 
Nr2f1*,  Nr2f2,

Lhx6, Sox6, Satb1

Dlx1/2/5/6, 

Lhx6*, Prox1 *
Nr2f1*,  Arx?, 

VIP CR*

Zeb2?, Prox1, Sp8
Nr2f1?, Nr2f2, Arx?,

Dlx1/2/5/6*, 

Zeb2?, Prox1, Sp8
Nr2f1*, Nr2f2*, Arx,

PV* SST*
RLN* NPY* 

Dlx1/2/5/6?,

Nr2f1?, Arx?, 
Lhx6*, Prox1 *

cell fate commitment, 
tangential migration

radial migration, layer selection, 
synaptogenesis, 

maturation

neurogenesis,
cell fate commitment

RLN (SST -ve )

Dlx1/2/5/6*, 

mature interneurons

SST CR

SST

PV
Dlx5/6*, Arx?, Zeb2?,
Lhx6, Sox6, Satb1

Dlx1/2/5/6*, 

Nr2f1*, Arx?, Zeb2?,

Dlx1/2/5/6*, 

Arx, Zeb2?, 
Nr2f1*, Nr2f2*,

Lhx6, Sox6, Satb1

Lhx6, Sox6, Satb1

Current Opinion in Neurobiology

Genetic programs controlling cortical interneuron development. (a) Progressive stages of cortical interneuron development. (b) Cortical interneuron

development from the three major telencephalic sources: the MGE, the dCGE and the POA. Transcription factors involved at different stages of cortical

interneuron development are shown. Some of these factors participate broadly in interneuron development (e.g. members of the DLX and NR2F

families and ARX). ZEB2 has been described in the MGE lineage but may also be expressed in other interneuron populations. Other transcription

factors are unique to specific domains and/or stages of differentiation: NKX2-1 defines the MGE neuroepithelium and activates a cascade of genes

downstream including Lhx6, Sox6 and Satb1; NKX6-2 and GLI1 are enriched in the neuroepithelium of the dMGE (although not restricted to that region)

and provide this domain with its unique identity and differentiation potential; DBX1 and HMX3 have been used to fate-map the POA because of their

restricted expression in this domain; PROX1 and SP8 have been identified as being expressed in CGE-derived cortical interneurons at all stages of

their development. Although depicted as having common precursors, interneurons that originate from the same neuroepithelial domain may arise from

lineages that split early during development. Note that the VZ of the dMGE expresses MGE transcription factors in addition to the dMGE-specific

genes indicated. ? indicates that expression is unclear or unknown. * indicates expression in some but not all cells. Expression of Zeb2, Sox6 and

Satb1 has not been examined in POA-derived cortical interneurons.
that show prolonged expression in subsets of cortical

interneurons beyond the initial specification and

migration stages and are deployed in multiple ways in

the regulation of interneuron development [4,5��,6,7��,8].
www.sciencedirect.com 
ASCL1 is another transcription factor that is expressed in

the subcortical telencephalon and is thought to function

high up in the hierarchy of cortical interneuron devel-

opment. ASCL1 loss-of-function (LOF) mutants have
Current Opinion in Neurobiology 2014, 26:79–87
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Table 1

Transcription factors and reported functions in cortical interneuron development

Transcription factor Function in cortical

interneuron development

Referencesa Association with human psychiatric/

neurological disordersb

ARX Migration [55,56] X-Linked Mental Retardation; X-Linked

Lissencephaly with Abnormal Genitalia

(mutations); Proud syndrome; Partington

syndrome; West syndrome (mutations)

ASCL1 (MASH1) Neuroepithelial patterning, neurogenesis [26,57,58]

DBX1 Unknown [42]

DLX1/2 Inhibition of glial fate, promotion

of GABAergic phenotype, migration,

differentiation, survival

[26,59–61] Autism Spectrum Disorder (SNP association)

DLX5/6 Migration, differentiation [30] Autism Spectrum Disorder (mutation); Rett

Syndrome (epigenetic)

GLI1 Neuroepithelial patterning [36]

GSX1/2 Neuroepithelial patterning, neurogenesis, cell fate [35,36,37�]

HMX3 (NKX5.1) Unknown [43]

LHX6 Migration, laminar distribution, differentiation [29,33,34,62] Schizophrenia (low Lhx6 RNA expression in

some patients)

NKX2-1 Neuroepithelial patterning, cell fate, migration [63–65]

NKX6-2 Neuroepithelial patterning, cell fate [36,66,67]

NR2F1 (COUPTFI) Progenitor proliferation [38]

NR2F2 (COUPTFII) Migration [68]

PROX1 Migration, differentiation, maturation [41�], Miyoshi and

Fishell, personal

communication

SATB1 Maturation [53�,54�]

SOX6 Laminar distribution, maturation [69,70]

SP8 Unknown [40�] Bipolar Disorder (locus and intergenic SNP

association); Schizophrenia (locus association);

Psychosis (locus association)

ZEB2 (SIP1) Cell fate, migration, [27�,28�] Mowat–Wilson syndrome

a Literature describing mouse mutants and/or other studies that provide insight into function in cortical interneuron development.
b Association of transcription factors with human psychiatric/neurological disorders reported in the OMIM (Online Mendelian Inheritance in Man),

GAD (Genetic Association Database) and Disgenet databases.
implicated this factor in the regulation of neurogenic

differentiation genes [23]. More recent compound

DLX1/2 and ASCL1 LOF mouse mutants have revealed

unique and overlapping genetic pathways regulated by

these factors in the ganglionic eminences [25,26]. Such

studies using mice harboring mutations at multiple loci

provide great insight into common and distinct functions

of transcriptional regulators and their downstream actions.

Genetic pathways to MGE-derived cortical
interneuron fates
The MGE is the largest source of interneurons for the

cortex, generating around 60% of the total population

[4,5��,6,7��,8]. This includes two major classes: firstly,

parvalbumin (PV)-expressing, fast spiking basket and

Chandelier cells and secondly, somatostatin (SST)-

expressing neurons that may express other markers such

as calretinin (CR), neuropeptide Y (NPY) or reelin

(RLN), may have multipolar, bitufted or bipolar den-

drites, distinct axonal arborizations and may exhibit

intrinsic-burst spiking or adapting non-fast spiking

responses to current injection (Figure 1) [12]. Although

lumped into two classes, PV-expressing and SST-expres-

sing interneurons are themselves diverse populations.
Current Opinion in Neurobiology 2014, 26:79–87 
What are the molecular pathways that direct their fates?

And by fate we refer to molecular identity, laminar

localization, axonal/dendritic morphology and physiologi-

cal characteristics, all of which are used as traits for

classification.

At the top of the molecular hierarchy governing MGE-

interneuron development is NKX2-1 (Table 1 and

Figure 2). The actions of NKX2-1 are central to the

MGE and are initiated through specification of the neu-

roepithelial MGE identity [4,5��,6,7��,8]. In its absence,

interneurons known to be derived from this region are

mis-specified into alternative fates. Yet Nkx2-1 is only

briefly expressed in the cortical interneuron lineage and

becomes downregulated in migrating immature cells as

part of their differentiation program [4,5��,6,7��,8].

ZEB2 (also referred to as SIP1) has recently been ident-

ified as another direct target of DLX1/2 [27�]. Although

its functions have been characterized in the MGE, ZEB2

may also play a role in the CGE-derived cortical inter-

neuron lineage [28�]. In ZEB2 conditional LOF mutants

MGE interneurons fail to migrate to the cortex due to

upregulation of the guidance receptor UNC5B [28�].
www.sciencedirect.com
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ZEB2-deficient MGE-derived cells remain instead in the

subpallium and switch to a striatal fate [27�]. This

suggested that ZEB2 may act as a fate-determining factor

in the MGE regulating cortical versus subcortical inter-

neuron fate [27�]. The alternative possibility that the fate-

switch may be due to cell non-autonomous defects occur-

ring from exposure to an ectopic environment remains to

be explored.

LHX6 is a transcription factor that is directly activated by

NKX2-1 and has a central role in neuronal development

from the MGE. Within the cortical interneuron lineage

LHX6 is required for migration, correct laminar distri-

bution and normal differentiation of PV-expressing and

SST-expressing cortical interneurons [4,5��,6,7��,8]. Intri-

guing findings in hypomorphic LHX6 mutants where

SST+ve but not the PV+ve interneurons are affected

suggest that the two populations may have different dose

requirements for LHX6 for their normal development

[29]. This idea casts further light onto the mechanism of

SST versus PV fate-specification from MGE precursors

(see subsequent sections).

SOX6 has been identified as acting downstream of LHX6

in immature MGE-derived cortical interneurons. LOF

studies in mice have revealed that SOX6 is not involved

in specification of subtype identity but is essential for

correct laminar position and maturation within the net-

work [4,5��,6,7��,8]. The extent to which the maturation

defects can be attributed to mis-positioning and lack of

normal wiring partners or to cell-autonomous loss of

SOX6 is unclear. Intriguingly, even though SOX6-

deficient interneurons are mis-positioned within the cor-

tex they still wire up to the cortical network indicating

some degree of plasticity in synaptic partner selection.

The DLX transcriptional regulators have additional func-

tions beyond the initial specification and migration stages.

DLX1 is required for dendritic maturation and survival of

SST+ve, NPY+ve and CR+ve interneurons whereas DLX5/

6 are required for development of PV+ve interneurons

[4,5��,6,7��,8]. On the basis of these findings it has been

suggested that LHX6 may act together with either DLX1

to promote the SST fate or DLX5/6 to promote the PV

fate [30].

Other transcription factor-encoding genes have been

identified in MGE-derived cortical interneurons through

expression profiling and other studies. Examples include

Cux2, Nr4a1, Rora, Mef2c, MafB and its relative cMaf [31–
33]. For some of these genes validation of expression is

still pending, and their significance in cortical interneuron

development awaits confirmation by functional studies.

Specifying the dMGE fate
Genetic fate-mapping has shown that cortical Martinotti

cells co-expressing SST and CR originate exclusively
www.sciencedirect.com 
from the dMGE indicating that this region has unique

differentiation potential (Figure 1) [4,5��,6,7��,8]. How is

this achieved? The dMGE is morphologically continuous

but molecularly distinct from the rest of the MGE as it

expresses markers such as Gli1 and Nkx6-2 (Table 1 and

Figure 2). Since the expression of these two transcription

factors is usually associated with high levels of SHH

signaling, it has been proposed that the dMGE is speci-

fied by increased exposure to SHH. The findings that the

dMGE has a bias for generating SST over PV cortical

interneurons and that high SHH signaling promotes SST

over PV fate support the notion of dMGE fate-specifica-

tion through enhanced SHH signals [4,5��,6,7��,8,15].

More recent work into the function of LHX6 and its

related factor LHX8 (also referred to as LHX7) has once

more demonstrated the requirement for high SHH signals

in the development of the dMGE [34]. According to the

proposed model, LHX6 and LHX8, which are expressed

in postmitotic neurons in the developing MGE, promote

activation of the Shh gene in the same cells. SHH secreted

from these neurons feeds forward onto the overlying VZ

of the MGE to specify dMGE fates by promoting upre-

gulation of Gli1, Nkx2-1, Ptch1 and Nkx6-2 [34]. Expres-

sion of some of these genes is restricted to the dMGE thus

endowing this region with its distinct identity. The

demonstration that certain interneuron subtypes are

generated exclusively from the dMGE shows once more

how molecular subdivision of neuroepithelial precursors

specifies mature neuronal fates.

Opening the black box of CGE interneuron
fate specification
The CGE is the second largest contributor to cortical and

hippocampal interneurons generating 30–40% of the total

population in the adult cortex (Figure 1) [4,5��,6,7��,8].

Interneurons generated from the dorsal CGE (dCGE) are

distinct from those of the MGE and include two major

classes: firstly, RLN-expressing (SST�ve) late-spiking

cells that have multipolar morphology and secondly,

vasoactive intestinal peptide (VIP)-expressing irregular-

spiking or fast-adapting cells that may co-express CR and

may have bipolar/bitufted or sometimes multipolar

morphologies (Figure 1) [12]. Knowledge of the genetic

pathways that specify these fates is only now beginning to

emerge partly because of the paucity of tools that could be

used to uniquely label the CGE and its neuronal progeny.

At the top of the hierarchy governing the development of

the CGE and its rostral extension, the lateral ganglionic

eminence (LGE), is the transcription factor GSX2 (also

referred to as GSH2) (Table 1 and Figure 2)

[4,5��,6,7��,8]. GSX2 is enriched in (but not restricted

to) the neuroepithelium of the LGE/CGE from early

development. Its initial function is to promote expression

of downstream genes such as ASCL1, DLX2 and OLIG2-

factors that initiate different aspects of LGE/CGE
Current Opinion in Neurobiology 2014, 26:79–87
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identity [35]. In addition, GSX2 has been directly impli-

cated in promoting the CR-expressing interneuron iden-

tity [36]. A related gene, GSX1, is co-expressed with

GSX2 in the ventral telencephalon. The two have com-

mon functions in the specification of LGE/CGE identity

but differentially regulate neurogenesis with GSX2 main-

taining a progenitor state and GSX1 promoting neuronal

differentiation [37�].

Another three transcription factors that have been impli-

cated in CGE-derived interneuron development are

NR2F1, NR2F2 and SP8. Expression of NR2F1 (also

referred to as COUPTFI) is enriched in the CGE, the

dMGE and POA but it is not restricted to these regions

[38]. A role for NR2F1 in interneuron development has

been demonstrated through conditional LOF studies

which resulted in an imbalance of interneuron subtypes

in the cortex [38]. This has been attributed to a defect in

progenitor proliferation rather than cell fate determination

[38]. The related transcription factor, NR2F2 (COUPT-

FII), is involved in directing interneurons through a caudal

migration route [4,5��,6,7��,8]. Like NR2F1, expression of

NR2F2 is not linked to a single origin and can be observed

in MGE-derived as well as CGE-derived interneurons

[4,5��,6,7��,8,39]. More recently, SP8 has been identified

as a marker for some CGE interneurons; its function in the

lineage remains unknown [40�].

A breakthrough into the specification of CGE fates has

been the finding of PROX1 expression in the lineage.

PROX1 is a transcription factor that is present in nearly

all striatal interneurons regardless of their origin but within

the cortical interneuron population expression is confined

to CGE and POA-derived cells [41�]. LOF studies in mice

have demonstrated an essential role for this transcription

factor in the development of CGE-derived cortical inter-

neurons: at early stages PROX1 is necessary for radial

migration and proper positioning within the cortical plate;

at later stages the requirement for PROX1 is subtype-

specific, functioning in morphogenesis, maturation and

network integration (G Miyoshi and G Fishell, personal

communication). CGE-derived interneurons lacking

PROX1 maintain expression of NR2F2 and SP8

suggesting independent activation of these two transcrip-

tion factors (G Miyoshi and G Fishell, personal communi-

cation). PROX1 is therefore a lineage tracer for the CGE-

derived cortical interneuron population acting at multiple

points to regulate their differentiation. How a single tran-

scription factor such as PROX1 (or LHX6 in the MGE-

lineage) can have multiple functions in different cell types

and at different stages of development is unknown but

likely to be mediated by differential binding to as yet

unidentified transcriptional cofactors.

The mysterious POA-derived interneurons
Interneurons generated from the POA contribute only

�10% of the total population in the adult cortex but
Current Opinion in Neurobiology 2014, 26:79–87 
include a large diversity of subtypes (Figure 1)

[4,5��,6,7��,8]. As the POA has only recently been placed

on the source map of cortical interneurons we have almost

no data on how these cells are specified. Genes involved

in fate-direction elsewhere in the telencephalon are also

expressed in the POA and contribute to patterning of this

domain (Figure 2). These include SHH and NKX2-1

which are expressed in the majority of the POA neuroe-

pithelium, DBX1 and NKX6-2 which label respectively

the dorsal and ventral POA domains and the postmitotic

marker HMX3 (also referred to as NKX5-1), which is

expressed in small subsets of cells adjacent to the neu-

roepithelium [14,42,43]. Some of these genes have been

used in lineage tracing studies of the POA [42,43] but

their contribution to interneuron specification remains

elusive.

Genetic pathways and environmental cues:
nature and nurture
There are numerous overlapping steps in cortical inter-

neuron development before a fully mature phenotype is

established. These include tangential migration through

the subpallium and the pallium, radial migration and layer

selection within the cortical plate, formation of axonal and

dendritic arborizations, expression of mature markers

related to physiological properties, synaptic target cell

selection and subcellular targeting of synapses (Figure 2).

There is evidence showing that nearly all of these are

linked to the embryonic origin of interneurons and there-

fore are specified by genetic pathways. Even cell death, a

process by which 40% of interneurons generated during

development are eliminated, is thought to be determined

by intrinsic factors [44]. However, genetic programs do

not act in isolation and environmental cues are essential

for their correct execution. For example, from the onset of

their migratory journey, interneurons depend on gui-

dance cues secreted by the environment to find their

way to their destination. In the absence of such signals

interneuron distribution becomes abnormal [45]. Late-

born CR-expressing interneurons additionally require

electrical activity for migration as well as development

of their axonal and dendritic arbors [46��]. Furthermore,

layer acquisition and connectivity, both of which show

high specificity, are determined by embryonic origin but

are also dependent on local cues [47��,48,49,50��]. And

even expression of neurotransmitters, channels and neu-

rotransmitter receptors is genetically predetermined but

requires external influences for acquisition of mature

phenotypic features [51,52�].

The discovery of the activity-dependent expression of

SATB1 in cortical interneurons is one of the most recent

examples of environmental influences on the genetic

program of interneuron development [53�,54�]. SATB1

is a maturation-promoting factor that is expressed in

subsets of cortical interneurons. In its absence, SST-

expressing interneurons lose hallmarks of their identity
www.sciencedirect.com
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[53�,54�]. They do not convert to an alternative fate but

simply remain as immature neurons. Expression of

SATB1 is detected just before birth and evidence

suggests that this is dependent on cortical activity

[53�,54�]. Yet induction of SATB1 is restricted to MGE

interneurons and requires LHX6 function [54�]. SATB1

therefore forms the link between a developmentally

imposed genetic specification program and extrinsic

environmental cues; a prime example of nature and

nurture intertwined to specify cell fate.

Concluding remarks
We currently have a framework of the initial genetic

pathways that lead to cortical interneuron cell fates but

we are far from a complete picture (Figure 2). We lack

almost any insight into late developmental events such as

specification of axonal and dendritic blueprints, synaptic

partner selection or expression of channels and receptors

that define the physiological characteristics of mature

interneurons. These processes are all likely to be highly

dependent on intrinsic factors and environmental influ-

ences. Some of the early-acting genes already identified

are undoubtedly acting as ‘master’ regulators that trigger

downstream genetic cascades. As new factors come into

play these will either feed into the known pathways or

expand the branches to further refine our understanding

of the mechanisms that control cortical interneuron trait

acquisition.
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